Innovations in Bioprocess Engineering in CNY

John Fieschko, PhD
Executive Director
CNY Biotechnology Research Center

How Bioprocess Engineering Can Make a Difference – 2 examples

Amgen, Inc (1983)

- 60-70 people, mostly molecular biologists and protein chemists
- No engineers
- Operational funds for 1-2 years
- Many product ideas based on recombinant proteins

Amgen, Inc (1983)

- Luria broth fermentation process (~2 OD or ~ 50 mg/liter recombinant protein)
- Pilot plant with 10 ten liter fermentors
- 7,000 liter fermentor purchased but not yet installed for Chicago GMP facility

Amgen, Inc (1983)

- E. coli K-12 host strain
- Suspected susceptibility to growth inhibition by acetate
- Previous attempts to grow cells to high cell density in batch process failed

Fermentation Design

- Choice of reactor system batch, fedbatch, continuous
- Influenced by:
 - Organism stability
 - Oxygen transfer requirements
 - Heat transfer requirements
 - $Q_f = 0.12 Q_{O_2}$
 - Product yield

High Cell Density Growth — General Approach

- Use of defined minimal media
- Selection of appropriate specific growth rate
- Carbon nutrient limitation in fed-batch mode

Process Development Methodology

- Establish growth kinetics
- Determine growth yield
 - Design media
- Optimize for growth and expression

Escherichia coli example

- Chemostat growth to determine acetate accumulation profile vs. specific growth rate and calculation of growth yield and maintenance coefficients
- Design of medium to support high cell density growth
- Growth of non-recombinant strain
- Growth of recombinant strain and expression of alpha interferon

Amgen, Inc (1984)

- All production remained in Thousand Oaks, CA
- 7,000 liter fermentor in Chicago sold
- Lease of building in Chicago terminated
- Amgen had capacity to pursue diverse product portfolio strategy with minimal resources and \$
- Technology was used to produce *Neupogen*, one of Amgen's two *blockbuster* drugs (over \$1 billion dollars per year in sales)

Amgen, Inc (1996)

- *Epogen* approved 1995
- Manufacturing facility running at capacity (200 g/year)
- Market grossly underestimated
- J&J had right to manufacture if we could not meet market demand
- Retail value of *Epogen* ~ \$1 million per gram

Amgen, Inc (1996)

- Manufacturing facility hemmed in by terrain and other manufacturing buildings
 - footprint could not expand
- Roller bottle process was capacity limiting step
- Management did not want to change to "deep tank" technology

Epogen Roller Bottle Process

- Standard roller bottles
- 200 mls per bottle
- Serum containing growth cycle followed by two basal media production cycles with DMEM/F 12 media mix
- Cells would fall off bottles, primarily during second cycle, and clog filters
- What to do?

Experimental Approach

- Characterize problem
 - Measure dissolved oxygen, CO2, pH, glucose and lactate levels, cell viability

Experimental Data

- First cycle data okay
- Second cycle:
 - Oxygen depletion
 - C02 and lactate buildup, dropping pH
 - Glucose depletion
 - Cell viability decreasing

Experimental Solution

- Develop a gas permeable membrane (in roller bottle cap) allowing oxygen in, CO2 out
- Increase phosphate concentration to provide pH buffering (to replace lost carbonate buffering capacity)
- Increase glucose concentration
- Increase duration of production cycles
- Increase number of production cycles from two to three

Experimental Results

- Cell numbers and viability increased
- Product titers increased 30-40%
- Plant output increased from 200 g/year to over 1,000 g/year @ \$1 million per gram
- Sales of Epogen increased to over \$1 billion per year (Amgen's other blockbuster drug)

Bioprocess Engineering Does Make a Difference

Central New York

Opportunities for biotechnology and bioprocess engineering

 Collaboration between academic institutions and private industry to spur economic development and growth

Upstate New York's Biosciences Corridor

Central New York Biotechnology Research Center

- A non-profit 501 c.3 corporation created through the efforts of SUNY ESF, SUNY UMU, MDA and Bristol-Myers Squibb, board includes representation from Syracuse University, Le Moyne College and other companies
- Initial seed funding of \$500,000 from BMS

Central New York Biotechnology Research Center

- \$20 million in allocated state funds for building construction
- Mission is to create economic growth through joint applied biotechnology research and development between academic institutions and the private sector

\$1 Million NASA Award CNY BRC Funded Research

Project Description	Funding Level
Repair of Spinal Cord Injuries using cultured Schwann Cells (UMU/SU)	\$120,000
Application of Gene Therapy to Blinding Retinal Diseases (UMU)	\$120,000
Biodegradable Implants for Torn Wrist Ligaments (UMU)	\$120,000
Optimization of an Electromagnetic Treatment for Osteoporosis (UMU)	\$120,000
Composite metal ceramic matrix implant materials for joint replacement (UMU)	\$120,000

\$1 Million NASA Award CNY BRC Funded Research

Project Description	Funding Level
The Biorefinery in New York (ESF)	\$100,000
Production of Hydrogen from Woody Biomass (ESF)	\$75,000
Production of Biopolymer Thermoplastics from Woody Biomass (ESF)	\$75,000
Development of New Physical Supports for Chromatography Resins (ESF)	\$50,000
Development of Nanobrushes for Bone Répair Cement (ESF)	\$50,000 ₂₄

Some Relevant Biotechnology Industry Trends (relevant to CNY)

- Generic biologics, high cost of energy and increasing cost pressures on drug prices
 - More efficient manufacturing processes

CNY BRC New Project Awards

- "Optimization of a Bioprocess to Produce a r-DNA Based Human Therapeutic Product"
- \$100,000 contract process development work for Maryland based company to optimize the commercial production process for a human therapeutic (details confidential) project completed

CNY BRC New Project Awards

- "The Use of Microporous Ceramic Composite Membrane Technology in the Improvement of Biofuels and Bioproducts Production"
- \$500,000 project, \$250,000 award from NYSERDA, 2007
- Partner with Corning, Inc., the Hilliard Corporation and SUNY ESF

Some Relevant Biotechnology Industry Trends (relevant to CNY)

- Higher Energy Costs, Global Warming, Environmental Pollution
 - Bioenergy and other products from renewable resources
 - Use of disposables in GMP and medical products manufacturing

CNY BRC New Project Awards

- "Performance Testing of a Novel Bioreactor for Ethanol Production from Cheese Whey"
- \$800,000 project, \$400,000 award from NYSERDA, 2007
- Partner with Corning, Inc., the Hilliard Corporation, Kraft Foods and SUNY ESF

CNY BRC Project Proposals

- "Evaluation of waste streams generated by New York State's cheese industry for the production of biodegradable plastics"
- \$120,000 project, seeking a \$60,000 award from NYS Dept of Agriculture and Markets, submitted summer of 2007
- Partner with Welch Allyn, Kraft Foods and SUNY ESF

CNY BRC Project Proposals

- Ethanol Production from Combined Feed Streams from Wood Sugars and Cheese Whey
- \$120,000 project, seeking a \$60,000 award from NYS Dept of Agricultural and Markets, submitted summer of 2007
- Partner with Kraft Foods, SUNY ESF

Some Relevant Biotechnology Industry Trends (relevant to CNY)

- Personalized Medicine
 - Customized stem cell preparations

CNY BRC Project Proposals

- "GMP Validation and Performance Demonstration of the Biospherix X-Vivo Incubation System"
- \$1,000,000 project, seeking a \$500,000 award from NYSTAR, in preparation
- Partner with Biospherix, LLC., Upstate Medical University, SUNY ESF

Other Major Funding Opportunites

- CAT Application (>\$10 million NYSTAR opportunity)
 - "CAT for Bioprocessing and Production of Biocompatible Materials" with SUNY ESF, SUNY UMU and 12 industry collaborative projects
 - NYSTAR withdrew RFP

Other Major Funding Opportunities

- NYS Dept of Environmental Conservation (initial \$2 million award)
 - To create center focused on sustainability and reduction of energy and resource consumption as well as reduction or elimination of hazardous substances, pollution and waste
 - Proposal in Preparation for December, 2007 submission

Future

- Continue to develop and create funded joint academic-industry projects complementary to ESF and UMU with primarily NYS companies
- Establish significant laboratory capability in bioprocessing and biotechnoogy using new staff and research funds
- Continue to pursue operating funds for CNY BRC

Goals for the Future

- Near term (2-5 years)
 - \$2 million per year in research programs
 - Achieve statewide reputation as the "go to" center for bioprocess engineering
 - Receive CAT or similar designation and related operational funding
 - Construct \$20 million CNY BRC building

Goals for the Future

- Longer term (5-10 years)
 - \$5 million in annual research programs
 - Achieve national reputation as the "go to" center for bioprocess engineering
 - Procure additional \$20 million in construction funds for specialized labs, possible GMP pilot plant

Thank You

11/16/2007 40

11/16/2007 41